
Capacity of the single-layer perceptron and minimal trajectory training algorithms

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 3757

(http://iopscience.iop.org/0305-4470/26/15/025)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 19:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/15
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 26 (1993) 3757-3773. Printed in the UK 

Capacity of the single-layer perceptron and minimal 
trajectory training algorithms 

D Saadt 
Faculty of Engineering, Tel Aviv University, 69978, Ismel 

Received 13 April 1992, in final form 10 May 1993 

Ahstract. The entire set of binary vectors to be stored using a single-layer perceptron can be 
divided into two groups, one for which the output neuron state consistentlyequals one of the 
input neuron states and a second for which the output neuron state consistently negates the 
same input neuron. The capacity of the singE-layer perceptron depends on the ratio between 
these two groups. This dependence is examined via shtistical mechanical methods, producing 
the probability of obtaining a linearly separable solution for a random selection of input-output 
relations, for a given value of the above ratio. 'Ibis probability is extremely useful for designing 
recurrent neural nehvork training algorithms. These algorithms make use of the obtained results 
to select the most probable internal representations to be realized in such nets.. Moreover, the 
distribution of the linearly sepanble binary functions enables us to obtain a good estimate for 
the total number of linearly separable binary functions for a ceriain number of input neurons, 
a task considered as a hard computltional problem. Additional incentives far carrying out 
the calculation are understanding the capacity of simple nets for certain types of input-output 
correlations and laying the foundations for analysing some constructive training algorithms such 
as the tiling and upst&algorithms. All results show consistency with existing theoreticalresults. 

1. Introduction 

Examining the single-layer perceptron with N neuron input layers and a single output 
neuron, one easily notices that there are two cases for which the desired input-output 
relations can always be realized 

(i) the output neuron state is consistently identical to a certain (fixed) input neuron state 
for each and every input vector; 

(ii) the output neuron state is consistently opposite to a certain (fixed) input neuron state 
for each and every input vector. 

Obviously these two cases can be achieved by defining the weight vector connecting the 
output neuron to the  above^ mentioned input neuron to be greater in its absolute value than 
the summation of the absolute values of all other neurons, while its sign selects between the 
two cases$. Each of these cases also remains linearly separable if we randomly select one 
of the input vectors to produce an output result which opposes the said resemblance rule 
(an irregular vector). This can be easily obtained by defining the incoming weights with 
respect to the output neuron according to the irregular vector (besides the weight element 
connecting the output neuron to the input neuron which determines the similarity) as well 

t Current address: Department of Physics, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh 
EH9 3JZ, UK. 
1. A special case would be a constant +1 or -1 output. obtained by selecting the desired output to resemble the 
canstant dummy neuron representing the threshold via its weight. 

0305-4470/93/153757+17$07.50 @ 1993 IOP Publishing Ltd 3151 



3758 D S a d  

as defining the threshold in accordance with the desired result. For example, if the irregular 
vector is vq and the desired output is 

zlP‘out = [;q i f p = q  
otherwise 

the weight vector for separating the two cases is then of the form 
N - - E  f o r j = l  I - z l ~ u ~  otherwise, including j = 0 wj = 

where W represents the weight vector, E is a small positive constant obeying 0 e e < 2 
and the index 0 is related to the dummy neuron used for the output neuron’s threshold. 

Intuitively, when we require more input vectors to be irregular in relation to the defined 
rule we increase the burden on the weight vector, since it has to cany more and more 
information for selecting the irregulars from the regular group of input-output relations. 
Thus, we should expect that by increasing the number of irregulars we decrease the 
probability of implementing the said relation via a single-layer perceptron. This probability 
is expected to decrease until the number of irregular members surpasses the number of 
regular ones, reversing the regular and irregular groups (now with respect to the input- 
output relations negating the one with which we originally stated). 

In this paper we examine the dependence of the singlelayer percepwon capacity on 
the ratio between the regular and irregular input-output relations using Gardner’s method 
[l], giving us insight into understanding the storage capabilities of correlated patterns of a 
certain type. This dependence enables us to compute the probability of selecting a linearly 
separable combination of ‘regular’ and ‘irregular’ input-output relations for a given ratio 
between the two groups. In addition, by summing the number of linearly separable binary 
functions over all possible ratios one obtains the total number of linearly separable functions, 
for a given number N of input neurons, a task considered as a hard computational problem 
U81. 

A comparison between the computed and theoretical results for both the probabilities of 
realizing a certain input-output relation, with a given correlation ratio, and the total number 
of linearly separable groups shows good correlation with other published results related to 
specific values of N .  

An additional incentive for computing these probabilities is that they form the basic tools 
for analysing constructive algorithms such as tiling [Z] and upstart [3]. These algorithms 
are based on storing the input-output relations of the various training patterns in parts, 
enhancing the input-output correlation for successive layers. 

The last section of this paper explains the relation between the new results and the 
minimal trajectory algorithm [4]. The basic idea is to use the new results to construct a 
recurrent neural network training algorithm based on prior selection of the most probable 
internal representations to be realized in this architecture. The probabilities for the internal 
representations selection are then directly related to results obtained in this work. 

2. Computing the capacity 

For computing the capacity we use Gardner’s method [I], based on measuring the 
normalized weight space volume enabling the storage of p vectors: 



Single-layer perceptron and minimal trajectory training algorithms 3759 

where p is the pattem index, j is the site index, are the output neuron state and 
the input vector state respectively, related to pattern index p, w is the set of weights, N 
the number of input neurons, K is the margin size and 0 a step function. The denominator 
as well as the last term in the numerator result from an additional restriction for the set of 
weights cy=l w; = N. The numerator in equation (1) represents the volume of the weight 
space enabling the storage of p patterns while the denominator represents the volume of 
the entire relevant weight space. 

Since the statistically relevant quantity is the average over the pattern distribution, i.e. 
of the logarithm of V ,  we follow Gardner by introducing replicas for the weights, averaging 
the value of V” 

and 

i) nLl JdwLL [n$=I P+)][n$=, 6”(<”5 E”-f]8(Cy=,(w;)’ - N) 
~ L I  .fdwa8(Cy=1(Wy)* - N) 

((V“)) = (( 
(2) 

where OL is the replica index and 

Since for all patterns indexed p+ the output neuron state equals a c e r t b  input neuron 
(which we shall define as with no loss of generality), while for all patterns indexed p- 

the output neuron state equals -$, we can express the 0 functions explicitly as 

where K* K w p / f i .  
Replacing the 0 function by its integral form 

where 

we can average the expression over all patterns and replicas in the limit of large N to obtain 

where quo = (l /N) E,+, W ~ W , ”  is a new order parameter (note that qcc = 1 - ( W ~ ) ~ / N ) .  



3760 D Saad 

The next step is to rewrite the average over the product of 0 functions and to replace 
the restriction for the value of cj(wy)z and for the definition of qup by the following 8 
functions: 

and 

where E, and Fup are the integration variables related to certain replicas (Y and p .  One can 
then replace equation (2) by the following equation 

where G and H are defined as 

and 

where p* represents the number of patterns to be stored related to the two different groups, 
the group of vectors in which the desired output resembles the first input neuron state 
(indexed +) and the group in which the output state negates the said neuron state (indexed 
-). The j index of the various weights has been eliminated since it is a dummy index 
common to all of the elements. 

Applying the replica-symmetric ansatz: 

qrxp = 4 Fap = F Ea = E (14) 



Single-layer perceptron and minim1 t ra jec tq  training algorithms 3761 

we can replace K by the following expression: 

Since the saddle point defines the optimal perceptron (in the l i t  of q + 1 - w:/N) we 
calculate the saddle-point equations: 

- 0  
ac _ -  -0  

ac ac - = o  -- 
aE aF a4 

defining w = w l / f l  as the normalized 'value of the weight W I  and p+ and p- in the 
following manner 

p+ p*/cu,(N - 1 )  

p+ + p -  = 1. 

Carrying out the calculation for the q -+ 1 - o2 limit which represents the maximal 
capacity limit one obtains the following expression for act 

Clearly, for o = 0 we retrieve Gardner's capacity expression 

Equation (19)~still includes a dependence on the value of the normalized weight o. Since 
we want the maximal capacity, i.e. the value of olC for the optimal o, we should maximize 
ac with respect to w .  Applying affcu,lao = 0 and using the identity B++p- = 1 one obtains 
the following expression for p+(w) related to the maximal capacity ffc 

Using equations (19) and (20) one can derive the optimal ,9 and a, expressions for 
each adeve ry  selection of the normalized weight w. One should note that the same result 

7 This explicit expression is a special case of the general capacity expression presented by Nadal [4], 



3162 D Saad 

9 
D 

0.50 0155 0150 0:65 0 : 7 0 ~  0175 O h  0:SS 0:SO 0195 ll00 
8 

Figure 1. The capacity ru, with respect to the ratio p for seveml values of K .  

can be obtained by referring to w as one of the free parameters of the expression for G, 
demanding an extra saddle-point requirement aG/aw = 0. 

The dependence of l yc  on the ratio ,Bt (which we shall define from now on as j3 since all 
values are symmetric with respect to j3+ and p - )  is shown in figure 1. Note the similarity 
between this graph and the dependence of cu, on the magnetization parameter m (representing 
the probability for a +1 bit in the set of stored patterns) presented in [I]. This similarity 
results from the fact that both of them represent the amount of information stored by the 
system. 

It is important to note that using equation (19) one can compute the value of 1yC with 
respect to any  given ratio j 3  and enforced neuron weight w (i.e. not only the optimal weight 
corresponding to a certain ratio defined by equation (ZI)), a fact that will be very helpful in 
the forthcoming section. The optimal values for the weight o and for q with respect to the 
ratio j3 are presented in figure 2. The capacity a, with respect to various values of the ratio 
j3 computed for several enforced values of o is shown in figure 3. A three-dimensional 
graph presenting the value of cc, with respect to different values of j3 and w is presented in 
figure 4. 

3. Computing the probability of obtaining a linearly separable binary function selecting 
an arbitrary binary function with a certain ratio p 

A binary function is defined by an exhaustive set of ZN binary vectors (of length N) 
and the binary output neuron representations related to them. Each and every function is 
characterized by a certain ratio j3, representing the fraction of the entire set of vectors for 
which the output neuron state equals (or negates, according to our definition) the state of 



Single-layer perceptron and minimal trajectory training algorithms 3763 

' LEGENO 

:]%I 

0 

Figure 2. The dependence of o and q with respect to the Mia 6 .  

a certain input neuron. In this section we will use the capacity expressions obtained in the 
previous section to derive the probability of obtaining a linearly separable function for a 
given value of ,!J. This will enable us to obtain a good approximation for the number of 
linekly separable binary functions related to a certain number N of input neuronsf. The 
calculation of the probability of linear separability is performed by counting the number 
of linearly separable functions that one can store in a single-layer perceptron based on the 
capacity computation of the previous section. 

One of the main incentives for carrying out the probability'computation is its importance 
for speeding up neural network training procedures by limiting our search for the proper 
system representationst. The proper system representations are expected to produce the 
right input-output relations as well as to be realizable. We therefore search representations 
related to a feasible solution in those regions of representation space which show a high 
probability of producing a linearly separable function. 

Starting with the exhaustive ensemble of B ZN vectors we will first compute 
the number of linearly separable functions for a given ,!J. Since one can always store 
A(F) a,@')(N - 1) vectorss with a certain value F (defined by equation (19)), we 

t An exact solution for this problem can be achieved using optimization techniques such as the simplex method, 
however, it requires large computational resources and gmws exponenIidly with the number of DPUIODS, already 
becoming unfeasible for a. relatively low number of neurons. 
$ A system representation is the vector representation of a system of neurons with a cemin configuration and a 
Erwin weight'matrix obtained by presenting to the system am input training vector. For feed-fonvard networks 
the system representations include representations of the variolis layers while for recurrent nets they include the 
vector representations related to the various time steps. 
! Obviously this number is always limited by the maximal n u e r  of such vectors that actually exist in the training 
set. 



3764 D Saad 

Figure 3. The capacity ac with respect to the ntio parameter fi and s e v e d  enforced values of 
the weight m. 

will have a total of CAW) p ossible selections of various functions with ratio p’, formed 
out of the selected A vectors, by assigning the different vectors to the regular and irregular 
groups, ,9’A and (1 - ,9’)A respectively (the output states for the remaining B - A vectors 
are now defined by the unique set of weights required for the storage of the first A vectors). 
However, the selection of A vectors with a value p’ does not determine the actual ratio 
of the entire ensemble B since it determines the ratio ,9” between regular and irregular 
‘groups onlyfor rhefirst A selected vectors. We do know, however, that a lineirly separable 
function was selected for all ofthe vectors in the ensemble since an actual set of weights 
was selected, ‘and that the value of the weight o related to one of the input neurons was 
determined by the optimal weight ow) required to achieve the optimal capacity for the 
value B‘ (equation (21)). 

In order to compute the number of functions obtained with an overall value p, we define 
a probability function @(b. p’, B )  representing the probability of obtaining an overall value 

when choosing and storing any A vectors out of the exhaustive. ensemble of B vectors 
with a ratio p’ between the two groups of vectors in A. To simplify the notation we 
will redefine the function @ with respect to two new arguments @“(p’, Z). The argument 
Z = B - A(p’) is the number of remaining vectors after selecting A vectors to be stored in 
the network. The second argument is defined by p’ = (,8B -~p’A(B‘) ) / (B - A(B‘));  it is 
the value of the ratio for the remaining B - A vectors which gives the ratio p for the entire 
set B.  The weight o is enforced between the output neuron and the correlated input neuron 
by the previous selection of A vectors. We can therefore compute the number of binary 
functions for the entire set B with a certain ratio ,fJ to he formed by selecting a certain set 
o f  AV‘) vectors as 



Single-layer perceptron and minimal trajectory training a l g o r i t h  3165 

Figure 4. A three-dimensional graph presenting the 
value of U, with respect to different values of the ratio 
panmeter 8 and the weight W .  

However, equation (22) computes the number~of functions to be formed out of a certain 
selection and storage of A vectors while one can select a different set of A vectors to be 
stored and obtain different functions. By selecting a new set of vectors one should prevent 
double counting of functions generated by the various selections+. Thus, in order to obtain 
a lower bound for~the number of functions one should enforce at least for one of the 
vectors to represent an input-autput relation opposite to the one represented by the same 
vector in previous selections (thus creating necessarily a different function). This restriction 
reduces the number of functions obtained by the second selection to Cr&!y-' @ (B".Z), 

by the thud selection to Cf$!f'-*Qo@", Z) etc. Since any selection of an optimal weight 
0(,6') enables us to select functions with any ratio j > p' as well$ we can include in 
our summations all functions generated by selection of vectors with ratio > @'. All 
these functions differ from one another by the modification of the ratio fl  (for a given 
weight w(p') )  and by different weights w(p')  (for a given ratio j). Accumulating all of 
the functions of value p generated by various selections of A@') vectors therefore results 
in the following expression: 

t Selecting A input vectors and their related output neuron representations fixes the rest of the input-output 
relations. A different selection of the A vectors to be stored might result in an overall similar function if the 
resulting weight matrix assigns the 'free' vectors to genenfe input-output relations, similar to those defined in 
previous selections, in the various cases. 

t As suboptimal capacity for 8' > f .  The same arguments can be used for the case of 8' < f by replacing the 
decrement of the number af vectors by an increment and the inequality by $ < 8'. 



3766 D S a d  

Since the number of vectors to be stored A is limited by the number of such vectors 
that actually exist in the training set we might obtain an unfeasible number of functions. 
Since the total number of possible functions is C z B  for the ratio p, equation (23) becomes 

f i n  {CY, ZA""~Q"(/Y, z). (24) 

The probability P(@, B )  of obtaining a linearly separable function selecting a random 
function for the entire set of B vectors with ratio @ can now be calculated. It is, in 
fact, the fraction of linearly separable functions for all possible selections of subsets of 
vectors with a ratio p' to be stored by the perceptron resulting with an overall @ ratio, with 
respect to the total number of possible functions with a similar ratio p :  

We have also used here the fact that C y  is the maximum number of possible functions for 
the ratio 6. 

A summation over all possible @ values gives LS(N)  the number of all possible linearly 
separable functions for N input neurons. 

Both of the expressions (25) and (26). which are, in fact, the target of our calculation, 
involve the two functions A(,9') and Q"(,9", 2). The capacity A(p) can be easily computed 
using equation (19), however, estimating the probability Q"(,!?", Z) requires additional 
computation, as follows. 

A certain selection of ratio f l  and a certain choice of A@') vectors to be stored 
determines a certain linearly separable function and a certain weight OJ (required to achieve 
this capacity). One can express the probability Q"(,9", 2) as the ratio between the number 
of linearly separable functions with a ratio B" to be formed from an ensemble of Z vectors 
in a perceptron with a given weight w,  and the total number of linearly separable functions 
with all possible ratios that can be formed in the same conditions (2 vectors and one 
given weight U).  Applying similar considerations to those utilized to obtain equation (26). 
examining this time an ensemble of Z vectors with a previously dejined weight w(B') ,  one 
obtains the following expression for the probability @"(,6", Z): 

where D ( y ,  0) a c ( y ,  w(B'))(N - 1) is the capacity of a perceptron for a certain ratio y 
and a given weight w (defined by equation (2l)t. Once D vectors with ratio y have been 
chosen (out of the ensemble Z )  we require a ratio 

t Note that here we make use of the general form of the capacity expression obtained previously. 



Single-layer perceptron and minimal trajectory training algorithms 3767 

for the rest of the (2 - D )  vectors in order to obtain an overall B” ratio (in a similar manner 
we require a ratio 

Y’Z-  Y D ( Y , O J )  
Z - W Y , ~ )  

for the terms in the denominator). One should note that the main difference between 
equations (25) and (27) is the fact that in the latter we assign one of the weights to a 
value of o(p’)  which is the optimal weight for storing the maximal number of vectors with 
the ratio f l  and not for the currently examined ratio ( y ) .  Another main difference is that 
in equation (27) in the denominator we only consider all the linearly separable functions 
instead of the entire set of possiblefunctions considered in equation (25). 

Equation (27) can be solved in an iterative manner, when each iteration is based on 
probabilities computed previously for lower Z values,  to obtain exact solutions. However, 
such an iterative computation is time consuming and we will, therefore, present two simple 
approximations which yield good results. 

3.1. @‘“(B”, Z) = S(0, B:, 
Assuming that most of the functions with a ratio ,9 are generated by a selection of A(T) 
vectors where ,E = p, we can use this approximation which results in a very simple form 
for equations (25) and (26). , .  

This approximation gives good results in comparison with the theoretical values 114,171 and 
with the results obtained by the well known approximation 1171 L S ( N )  = 2Ci=0CiN-, .  
The computed results for several special cases are shown in figures 5 and 6, table 2 (for the 
probabilities) and table 1 (for the number of linearly separable binary functions). 

ZN 

Table 1. The calculated number of linearly sepaxable functions for the various approximations 
in comparison with the theoretical values for the N = 1,2,. . . ,8-dimensiond space. 

L S W )  
N 

N Theoretical Approx 1 Approx 2 2 L O C : N _ ,  

1 4 4 4 4 
2 14 14 1 1  14 
3 104 1 22 108 128 
4 1882 1618 1706 3882 
5 94572 . ,  65506 69 590 ’ 412736 
6 15028 134 20 376610 20402059 151 22? 522 
7 8 378 070 864 51 603788482 47980317066 189 581 x IO6 
8 ~ 17561 539552946 ~ 153028631 553201 152 114419417~10~ 

Moreover, one can easily use this approximation to compute the number of linearly 
separable functions with different restrictions. Table 3 presents an approximation for the 
number of linearly separable functions for a single-layer perceptron with one weight OJ fixed 
in several values,, computed via equations (29) and (19). One should note that there is no 
other simple approximation to compute these values with certain weight restrictions. 



3768 D Saad 

B 

Figure 5. The probability for selecting a linearly separable function with respect to the ratio 
,9:N = 5, linear scale. 

3.2. Op"(Y", 2 - D )  = S(y, B') 
Refining the results, one can use this finer approximation, based on the assumption that 
the most probable ratio for a linearly separable function given a previously defined weight 
o(B ' )  and the limited set of the Z - D remaining vectors in equation (27). is the one 
related to the enforced weight U@"), i.e. the ratio ,6'. Using this assumption we can obtain 
approximated values for the various probabilities Ow@"', Z)  of the form 

where all of the notations are similar to those used previously except i. and p which 
represent the ratio for which the approximation holds, i.e. for which the following equalities 
hold (examining the definitions for both y" and y) 

Computing the various values for the probabilities O"(p", Z) using equation (30), and 
inserting them into equations (25)~and (26) one obtains a better approximation for the 
probabilities P ( p ,  B )  as well as for the number of linearly separable functions L S ( N ) .  The 
computed results for this approximation for several special cases are shown in figures 5 and 



Single-layer perceptron and minimal trajectory training algorithms 3769 

Figure 6. The probability for selecting a linearly sepxable function with respect to the ratio 
,B:N = 5,  lognrithmic scale. 

6, tables 1 and 2, showing superiority over the previous approximation as well as the well 
known approximation L S ( N )  = 2Ci=o C;#-,. 

Computing the probabilities via equation (30) requires some attention in order to deal 
with non-valid ratios that may occur, with the need for discretization as well as with the 
distortions resulting from the relatively small N numbers computed in comparison with the 
large N assumption used in our derivation. 

To deal with the first problem we define 9'"(,9", Z) = 0 for all p" > 1, p" c 0 and 
@"(y", Z - D) = 0 for aU y" > 1, y" i 0 (non-valid ratios). In addition we define 
@"(,9", 0) =, 1 and @,"(y", 0) = 1 for every valid ratio p', ,6", y and y" (i.e. when all 
vectors were previously stored). 

Obviously, dealing with small N numbers all of those mentioned summations @e a 
discrete form and therefore some discretization should be canied out. Since the values 
obtained for small problems are lower than the theoretical values we fixed the capacity 
values of AV') and D ( y )  to be the nearest higher integer in OUT simulationst. In addition 
we f ixed  the capacity A@', N = 1)  to a value of 2 (the the value) instead of 0, to overcome 
the distortion resulting from the use of low values of N .  

ZN 

4. Perceptron convergence properties and the minimal trajectory 

Most of the training methods that exist for recurrent neural networks (RNN) [5-81 as well 
as for feed-forward (F'F) nets [9] are based on direct modification of the weight matrix, 

t Obviously, one cannot store a fraction of a vector, and the discrete summation requires integer values. 



3770 D S a d  

Table 2. The computed probabilities of selecting a linearly separable function with a certain 
ratio B for a c e h n  number of input neurons N = 2,3,4,5 in comparison with the theoretical 
values. 

The probability to select a linearly separable function (%) 

N B  Theoretical Approx 1 Approx 2 

2 1.0 100 100 100 
0.75 100 100 100 
0.5 66.7 66.7 66.7 

3 1.0 100 100 100 
0.875 100 IO0 100 
0.75 42.9 100 62.2 

0.625 42.9 28.6 31.1 
0.5 20 22.9 43.3 

4 1.0 
0.9375 
0.875 
0.8125 
0.75 
0.6875 
0.625 
0.5625 
0.5 

100 
100 
26.7 
17.1 
4.8 
4.8 
2.4 
2.2 
0.8 

100 
100 
100 
45.7 
7.0 
2.9 
0.8 
0.6 
0.5 

100 
100 
12.5 
6.6 
5.1 
4.1 
2.6 
1.7 
1.6 

5 1.0 100 100 100 
0.96875 100 100 100 
0.9375 16.1 100 2.1 
0.90625 6.5 IW 1.1 
0.875 1.1 45.5 3.1 
0.84375 0.56 20 1.02 
0.8125 , 0.16 . 0.2 0.26 
0.78125 0.07 0.03 0.07 
0.75 0.02 0.01 0.02 

Table 3. The calculated number of linearly separable functions for various selections of o 
computed for the N = 1.2, . . . ,8  dimensional space. 

L S ( N ,  U)  Approx 1 

N o=O.2 o = 0.4 o = 0.6 w = 0.8 

1 4 4 4 4 
2 14 14 12 8 
3 122 114 
4 1362 1522 

74 
1282 

5 16 674 35682 60610 
6 209986 1437378 12927714 

44 
478 

16 874 
3818034 

7 2666626 75087746 I2905599 810 29968743698 
8 34125835 3720781 088 55645956440669 152863488002853888 

as derived from a gradient descent procedure which is designed to decrease a given 
cost function. However, such cost functions are based exclusively on the set of output 
vectors, while the weight matrices should solve the perceptron problem common to all 



Single-layer perceptron and minimal trajectory training algorithms 3111 

system representations in the various time steps (for RNN) or in the various layers (for 
FF nets). This restriction, usually disregarded by existing training methods, might result 
in a non-contributing weight modification, designed to improve the current stable output 
vector while deforming the trajectory (we define a trajectory as the set of successive system 
representations produced by the system in successive time steps, for RNN, or in successive 
layers, for FF, in response to a presentation of a certain input vector). 

Only a few algorithms for FF nets [ 10-121 as well as for RNN [13-151 tackle the training 
via modification of the internal system representations as an intermediate step towards weight 
matrix modifications. Selecting a proper set of system representations (or trajectory), that 
can be implemented by a set of perceptrons (or a single perceptron for RNN), would make 
the multiple-layer FF net training problem as well as the RNN training problem a simple 
multiple perceptron problem. 

The search for a proper set of system representations (or trajectory) is aimed at producing 
a set of binary representations which is the most probable to be solved by the perceptron 
learning rule, i.e. to produce a feasible weight matrix for the entire set of representationst. 

In the previous section we showed explicitly how increasing the number of vectors 
in the irregular group (a lower j? if j? > 0.5, a higher j? if j? < 0.5 ) increases the 
number of linearly separable functions that can be formed by randomly selected group 
members in the N-dimensional space. However, together with the increment in the number 
.of linearly separable cases for a selected number of irregular group members there is a 
significant increment in the number of all possible functions that can be formed from the 
same ensemble and a similar ratio 8 .  T h e  ratio between the number of linearly separable 
functions that can be constructed from a random choice cif a certain number of,irregular 
vectors and the~number of all possible functions constructe? by that random choice defines 
the probability for choosing a linearly separable set of vectors given the ratio between 
regular and irregular vectors. In the previous section we showed that the probability of 
obtaining a linearly separable set of vectors deteriorates rapidly with an increment in the 
number of irregular group members. 

The moral of this argument is very simple. We should minimize the number of irregular 
vectors in each and every one of the perceptrons, representing binary representations of two 
successive time steps (or layers). This will increase  the probability of obtaining linearly 
separable pairs of input-outputrepresentations to be implemented via the perceptron lmning 
rule [16]. It is interesting to note that constructive algorithms like tiling [Z] and upstart [3] 
basically work along these guidelines, enhancing the input-output correlation with each 
additional layer, keeping as many correlated input-output vector relations as possible. 

Since the binary input vectors as well as the desired binary output vector representations 
have been previously given we search for a proper trajectory for connecting them with 
a minimal number of ‘irregulars’ in the representations of the various time steps (or 
layers). This trajectory is the minimal trajectory in state space connecting input-output 
representations. Two successive representations of such a trajectory, related to two 
successive time steps (or layers) and a certain input vector are almost identical differing 

statistically by 

(33) 

t It should be emphasized that each valid trajectory connecting the input-output representations is consmcted 
from a set of represenntionsthat are linearly separable for every hvo successive time steps (for RNN) or layers 
(for FF nets). and thus can be obtained by utilizing the perceptron leaning rule. 



3112 D S a d  

bits, where d n . P  and -rP@' are the binary input and desired output vectors, related to pattern 
p ;  T ,  N, and P are the number of time steps (or layers for FF nets) prior to stabilization, 
the total number of neurons and total number of patterns respectively. 

Practically, this description defines a set of minimal binary trajectories from which one 
should select the most appropriate one for solving the given problem. Such a trajectory (in 
the RNN case) requires a single bit flip along the entire trajectory for each inconsistency 
between' input and desired output neurons, which is the minimal number of bit flips 
possible. Such a trajectory has therefore statistically, with the maximal identity between 
representations, related to successive time steps (or layers), or the minimal number of vectors 
in the group of irregulars; regular in this sense represents vectors for which the output and 
the input representations are identicalt. An explicit training algorithm aimed at searching 
for a proper minimal trajectory for RNN was presented in a previous paper [I41 constructing 
a method for system representations and weight matrix modifications for solving certain 
training problem. This algorithm was examined via extensive computer simulations for 
some toy problems and was found to be rapid and reliable in comparison with existing 
training algorithms. 

5. Conclusion 

In this paper we have computed the capacity of the single-layer perceptron as a function of 
a certain input-output correlation. This correlation divides the entire set of binary vectors 
to be stored for each function into two groups; one for which the output neuron state equals 
a certain input neuron state and a second for which the output neuron state negates the state 
of the same input neuron. The ratio between the number of vectors in one of these groups 
and the entire ensemble is defined as p .  We have demonstrated via statistical mechanics 
methods that the singlelayer perceptron capacity strongly depends on this ratio+. 

Next, we used these results to compute the probability of finding a perceptron solution 
for a randomly selected function with a certain ratio B, giving us insight into the type of 
internal representation one should be looking for in order to maximize the probability of 
realizing them in the multi-layer perceptrodf?" framework. The results of this computation 
are in agreement with the theoretical figures (computed for small systems). Using these 
probabilities, we also computed the overall number of linearly separable functions existing 
in N-dimensional space (i.e. for binary vectors of N dimensions). These results, showing 
consistency with the theoretical values for two different approximations used, were found 
to be superior to a commonly used approximation [17]. In addition the general expression 
found extends our capability of estimating the number of linearly separable functions with 
various restrictions which common approximations cannot tackle. 

Using the computed probabilities we explained one incentive for constructing training 
algorithms based on a search for the minimal trajectory for both FF nets and RNN, defining 
the system representations as an intermediate step towards weight matrix modifications. 
These incentives are a direct result of the calculation aimed at estimating the probability 
of finding a linearly separable function given a vector ratio @, which corresponds to the 
probability of implementing a set of internal representations with a certain ratio. 

t Note that the continuous form of the minimal trajectory minimks a cost function similar to the physical 
action integral J;:(dup/dr)*dr in the absence of potential. The discrete equivalent form of this cost function is 
ET=, E;=, lun(r + I )  - vP(t)l* where p is the index of the various patterns and f represents the various time 
steps (or layers). Hence, the said trajectory obeys a type of minimal action principle of a discrete form. 



Single-layer perceptron and minimal trajectory training algorithms 3113 

In addition, these cdculations give us the basic tools for analysing constructive training 
algorithms based upon input-output correlation enhancement. These probabilities might 
enable us to estimate the capabilities of these algorithms giving fruitful ground for further 
research. 

Acknowledgment 

The author would like to thank D J Wallace for reading the manuscript as well as for helpful 
comments. 

References 

PI 
I101 

Gardner E 1987 The space of intenctions in neural network models J. Phys. A: Math. Gen. 21 257-70 
M6zard M and Nadal J-P 1989 Learning in feed-fonvard layered networks: the tiling algorithm 3. P h s .  A: 

Frean F 1990 The upstarl algorithm: a method for constructing and training feedforward neural networks 

Nadal I-P 1990 On the storage capacity with sign constmined synaptic couplings Nerwork 1 4634 
Pineda P J 1987 Generalization of backpropagation to recurrent neural network Phys. Rev. Lett. 18 2229-32 
Almeida L B 1987 A leaming rule for asynchronous perceptrons with feed-back in a combinatorial 

Hinton G E, Sejnowski T R and Ackley D H 1984 Boltzmann machines: constraint satisfaction networks 

Williams R J and Zipser D 1989 A learning algorithm for continually running fully recurrent neural networks 

Rumelhart D E and McClelland J L 1986 Parallel Distributed Processing VOI 1 (Cambridge, MA: MIT) 
Sad D and Marom E 1990 Learning by choice of intemal representations-an energy minimization approach 

Grassman T, Meir R and Domany E 1989 k i n g  by choice of intemal representations Complex Sys. 2 

Nabutovsky D and Grossman T 1990 Learning by CHIR without storing internal representations Complex 

Snnd D 1992 Training recurrent neural network via trajectory modification Complex Sys. 6 213-36 
Sad D 1992 Training recurrent neural networks-the minimal trajectory algorithm Int. J. Neural Sys. 3 

Rohwer R 1990 The moving txgets training algorithm Neural Information Piocessing Sysrem (Denver, 

Math Gen. 22 2191-204 

Nenrol Compuf. 2 19&209 

environment Proc. IEEE Firsf Int. Con$ Neural Network II pp 609-18 

that learn Camegie-Mellon Technical Report CMU-CS-84-119 (Pittsburgh: PA) 

Neural Comput. 1270-80 

Complex Sys. 4 107-18 

555-75 

sy3.4 5 1 9 4 2  

83-101 

1989) vol2, ed D S Touretzky (San Maten: Morgan Kaufmann) PP 558-55 


